Crop Adaptation and Improvement for Drought-Prone Environments

Preface

Foreward
Acknowledgements

Editorial Team and Contributors

Socio-Economic Analysis of Dryland Crops Production

Chapter 1. Production and Consumption Trends of Dryland Staples in CORAF Nations

Chapter 2. Assessment of Farmers’ Groundnut Varietal Trait Preferences and Production Constraints in the Groundnut Basin of Senegal
Chapter 3. Yield Response of Dryland Cereals to Fertilizer on Smallholder Farms in Mali

Chapter 4. Counterfeit Herbicides, Productivity and Family Labor Use on Farms in Mali: A Multivalued Treatment Approach


Chapter 6. Consumer Willingness to Pay for Millet-based Food Attributes in Niger
Advanced Phenotyping and Crop Modelling for Adaptation to Drylands

Chapter 7. UAV Method Based on Multispectral Imaging for Field Phenotyping

Chapter 8. Agro-physiological Responses of 10 West Africa Sorghum Varieties to Early Water Deficit Assessed by UAV and Ground Phenotyping

Chapter 9. Toward a Regional Field Phenotyping Network in West Africa

Chapter 10. High-throughput Root Phenotyping: Opportunities and Challenges for the Adaptation of Arid and Semi-arid Crops to Future Climates
Chapter 11. Using Root-Soil Interactions in the Rhizosphere as Valuable Traits for Selection Against Drought

Chapter 12. Designing Dual-purpose Sorghum Ideotypes for High Grain and Biomass Yields Suitable for Various Target Environments in Senegal

Genetic Diversity and Improvement of Dryland Crops

Chapter 13. Biodiversity as a Cornerstone of Agrosystems’ Sustainability in West Africa

Chapter 14. Management of Cowpea [Vigna unguiculata L. (Walp)] Germplasm Diversity in Senegal: A Crucial Asset for Breeding Programs
Chapter 15. From Shade to Light: Fonio, an African Orphan Crop, Towards Renewed Challenges


Chapter 17. Modern Approaches for Sorghum Breeding in Mali

Chapter 18. Genetic Improvement of Pearl Millet in Senegal: Past, Present and Future Prospects

Appendix

Chapters’ corresponding authors

Book Abstract