INTRODUCTION

- Alternative cereals to barley for malting and brewing are essential because of climate change, non-viable cultivation of barley in tropical and sub-tropical region [1].

- Sorghum malt starch has higher gelatinization temperature than barley malt starch. This adversely influences hydrolysis of the starch by malt α-amylase [2] and exacerbated by disulphide bond mediated cross-linking of prolamins which may also limit starch granule expansion [3]. This highly limits subsequent hydrolysis of the starch to fermentable sugars [4] & limit hydrolysis of the proteins into FAN [5].

- Sorghum lines that express waxy and HD traits have been developed by Texas A&M University showed promising potentials for brewing [6]. However, optimization and pre-scale-up of the lines has not been studied. Thus, the aim of this study was to optimize malted adjunct sorghums for brewing potentials of local and improved sorghums genotypes.

RESULTS AND DISCUSSION

a) Grain Quality – composition vs adjunct potential

- Sorghum genotypes showed considerable variations in composition and adjunct quality. This is consistent with the findings that has been reported about unmalted sorghum qualities.

- Debir, Macia, ESH4 and ESH-1 - have excellent brewing quality in terms unmalted adjunct (Fig. 1) – attributed to their higher HWE.

CONCLUSIONS

The study reveals that Macia and Melkam are suitable for adjuncts being higher in HWE. ESH-1 and Melkam could be considered for malting with comparable desirability to that of waxy and HD lines. Generally, this study shows that the malting and adjunct quality characteristics checked in this experiment seemed to exhibit comparable results. These sorghums (malted or unmalted) have a potential to be used for brewing process – partly replacing barley malt or other adjunct.

b) Grain Quality – endosperm texture vs waxy-HD sorghums

- The endosperm texture of the sorghums varied from corneous to floury (Fig. 2). Red Swazi was the only floury. Argyt & Melkam had intermediate endosperm texture and all others were corneous/hard.

REFERENCES

ACKNOWLEDGEMENTS

This study is made possible by the support of the American People provided to the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet through the United States Agency for International Development (USAID). The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Program activities are funded by the United States Agency for International Development (USAID) under Cooperative Agreement No. AID-OAA-A-13-00047.