Sorghum is the fifth important crop (next to wheat, rice, maize and barley) serving as a food security crop for over 800 million people living in the arid and semi-arid regions of the world (1). Sorghum is a crop of the future with marginal yield increase potentials in the changing climate, where recurrent water deficit is expected (2). Sorghum based products has many health benefits for those who have the case of celiac disease (3). Thus, the objective of this study is to investigate the effect of varieties released in Ethiopia and soaking time on the physicochemical characteristics of whole sorghum-based snacks.

EXPERIMENTALS

- **Injera** — up to 50 - 65% replacing tef
 - Cleaning
 - Milling (fine)
 - Sieving

- **Couscous** — 100% sorghum healthy meal
 - Cleaning
 - Crushing
 - Sieving (1, 2 mm)

- **Cookies/pancakes** — up to 100% sorghum base
 - Cleaning
 - Milling (fine)
 - Sieving

- **Kinche** — 100% sorghum healthy meal
 - Cleaning
 - Crushing
 - Sieving (>2 mm)

- **Popped sorghum** — with different seasonings
 - Cleaning (washing, drying)
 - Popping (dry heating & Seasoning)

Sorghum **Fendisha**

- Characterizing the physicochemical characteristics of whole sorghum based snacks (kinche, couscous and popped sorghum)
- Small scale and piloting the whole sorghum based snacks (kinche, couscous and popped sorghum)

Reference

2. Ringler et al., 2010. Insights from Comprehensive Climate Change Scenarios. 2

ACKNOWLEDGEMENTS

This study is made possible by the support of the American People provided to the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet through the United States Agency for International Development (USAID). The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Program activities are funded by the United States Agency for International Development (USAID) under Cooperative Agreement No. AID-OAA-A-13-00047.