2023 ANNUAL REVIEW MEETING

February 22 – 27, 2023
Enhancing the yield effect in pearl millet and sorghum and disseminating the technology in West Africa

Case of Maradi, Niger

Dr. Hannatou Moussa; Dr. Charles I. Nwankwo; Mr Ali Maman Aminou; Prof. Dr. Ludger Herrmann
Contents

• seedball journey in Niger so far...

• seedball application testimonies

• combined effect of seedball + other strategies

• seedball scaling activities

• agro-sociology

• what next? general conclusions
Seedball journey so far...

• scientifically reviewed as a potential tool for Sahelian peasants
• developed and optimised for pearl millet and sorghum
• unveiled the yield enhancement mechanisms + several publications
• yet to find a solution for mechanised seedball production
 - open to effective, affordable and sustainable ideas...
• out-scaled in strategic regions of Niger
• currently undergoing socio-economic evaluations
Seedball testimonies

• several field trials by the local farmers?
• Seedball trial by soil, gender, location, sow time, etc
• seedball application with other management practices
• lessons from seedball interactive training sessions
• yield assessment in both pearl millet and sorghum
• suggestions from the farmers?
Combined effect of seedball + other strategies

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Yield (kg ha(^{-1}))</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay + sand + NPK</td>
<td>631</td>
<td>87</td>
</tr>
<tr>
<td>Manure + clay</td>
<td>703</td>
<td>76</td>
</tr>
<tr>
<td>Manure + liquid loda</td>
<td>592</td>
<td>97</td>
</tr>
<tr>
<td>Sand + liquid loda + ash</td>
<td>832</td>
<td>69</td>
</tr>
<tr>
<td>Sand + powder loda + NPK</td>
<td>681</td>
<td>70</td>
</tr>
</tbody>
</table>

➢ higher nutrient supply leads to better seedlings performance
Combined effect of seedball - recent field trials results

Results

- consistency in panicle enhancement
- higher nutrient supply = better panicle yield
- note the high error margins; field trial effect

SbA = Woodash Seedball; OM = Organic manure; M = Mineral fertiliser
Seedball scaling activities

• three different regions
• 4 cardinal axis – north, south, east, west
• different farmers federations + villages
• at least 10 producers per village
• gender balanced; male and female

<table>
<thead>
<tr>
<th>Region</th>
<th>Federation</th>
<th>Village</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maradi</td>
<td>FUMA</td>
<td>94</td>
<td>525</td>
<td>438</td>
</tr>
<tr>
<td>Dosso</td>
<td>Mooriben</td>
<td>15</td>
<td>105</td>
<td>45</td>
</tr>
<tr>
<td>Tillabery</td>
<td>Mooriben</td>
<td>15</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2</td>
<td>124</td>
<td>543</td>
</tr>
</tbody>
</table>

Both training and distribution were successful
Seedball scaling activities - *seedball caravan*

• all about seedball technology dissemination

• explained seedball to peasants application + benefits

• randomized seedball technology testing by men + women

• informal farmer extension visit; farmer to farmer discussion

• presented FUMA GASKIYA to all interested farmers

• exchanged contacts for future clarifications where needed

Sensitized over 1,000 farmers in different regions
Agro-sociology

Aim

• organizational set-up + procedures to qualify advisors for seedball training towards sustainable agriculture

Objectives

• to recall past participatory training activities and promote seedball technology in Maradi, Niger
• to review, analyse and reflect on trainers and trainees’ experiences (self-assessment and reflection)
• to achieve conceptualization in view of transformative learning options
Agro-sociology – preliminary results

<table>
<thead>
<tr>
<th>Highlights of training</th>
<th>Limitations of training</th>
<th>Consequences on future trainings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• training by group***</td>
<td>• certificate after each course</td>
<td>• group training must be maintained</td>
</tr>
<tr>
<td>• participatory approach***</td>
<td>• insufficient number of training days</td>
<td>• issuing of attestation after each training course</td>
</tr>
<tr>
<td>• collaboration between facilitators and producers**</td>
<td>• insufficient follow-up training</td>
<td>• increase the number of training days</td>
</tr>
<tr>
<td>• local transmission language**</td>
<td>• insufficient trainers</td>
<td>• carry out regular follow-ups of trainers.</td>
</tr>
<tr>
<td>• applied methods</td>
<td></td>
<td>• increase the number of trainers</td>
</tr>
<tr>
<td>• organizational skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• sharing experience**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The more the stars, the higher the level of emphasis
What next?

• continue with investigation of new products for seedball preparation
• monitoring of farmers’ innovation
• training of new farmers on seedball production and application
• seedball caravan continuation as a scaling means
• more impact studies + localized mechanization of seedball
• transfer of seedball to small-sized grains; which grains?
General conclusions

• seedball application is an affordable millet and sorghum yield enhancement option
• local farmers can apply the technology independently
• it is possible to combine seedball with other fertilisation strategies
• more work is needed on seedball technology mechanization
• transferring seedball to other small-sized grains might benefit the local farmers
Acknowledgement

This study is made possible through funding by the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet through grants from American People provided to the United States Agency for International Development (USAID) under cooperative agreement number AID-OAA-A-13-00047. The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the US Government.
Thank you...
FEED THE FUTURE
The U.S. Government's Global Hunger & Food Security Initiative