Exploring Sorghum Forage Technologies in Ethiopia: a Comprehensive Package for Impact

Aklilu Mekasha1, Asheber Tegegn1, Yonas Mulatu1, Getachew Ayana1, Alemu Tифessa1, Doohong Min2, Nathanael Bascom2 and Jessie Vipham2

1 Ethiopian Institute of Agricultural Research, Melkassa Agricultural Research Center; P.O.Box 436; 2 Kansas State University, Throckmorton Hall, 1712 Claflin Road, Manhattan, Kansas 66506, USA

Introduction
Sorghum is grown in Ethiopia by over five million farmers on over two million hectares of land. Its use as forage is limited by lack of appropriate variety, recommendations for cultivation and post harvest handling processing and use.

Objective
To develop package and demonstrate to farmers

Results
1. Variety identified
 - One forage type variety identified and released.
 - Two dual purpose varieties identified.
 - Traits of all varieties determined (Figure 2).

2. Comparative performance of dual purpose varieties
 - Figure 2. Performance of forage and dual type varieties

3. Performance of dual purpose varieties at different seeding rates
 - Figure 4. Stalk thickness under different seeding rates
 - Figure 5. IVOMD content under different seeding rates

4. Post harvest handling & processing
 - Chopping by Sickle
 - Chopping by Axe
 - Chopping by Machine
 - Silage Making
 - Low cost Silos
 - Quality Silage produced

5. Feeding trial
 - Figure 16. Milk yield increment

Summary and conclusion
- Identified varieties and demonstrated potential use by small scale farmers.
- Altering planting density enabled quality forage production.
- Feeding same quality forage used to demonstrate an increased milk production of cows by 1.7 kg/day.
- Different processing methods contributed to increased efficiency of use.
- The package demonstration further increased from an initial 200 farmers to over 6000 in seven districts.

Future direction
- Demonstrate and scale out to other farmers
- Create strong market linkage
- Broader package options

Acknowledgement: This study was made possible through funding by the Feed the Future Innovation Lab for Collaborative Research on Sorghum and Millet through grants from American People provided to the United States Agency for International Development (USAID) under cooperative agreement number AID-OAA-A-13-00447. The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the US Government.